Graphical representations of Ising and Potts models Stochastic geometry of the quantum Ising model and the space–time Potts model
نویسنده
چکیده
Statistical physics seeks to explain macroscopic properties of matter in terms of microscopic interactions. Of particular interest is the phenomenon of phase transition: the sudden changes in macroscopic properties as external conditions are varied. Two models in particular are of great interest to mathematicians, namely the Ising model of a magnet and the percolation model of a porous solid. These models in turn are part of the unifying framework of the random-cluster representation, a model for random graphs which was first studied by Fortuin and Kasteleyn in the 1970’s. The random-cluster representation has proved extremely useful in proving important facts about the Ising model and similar models. In this work we study the corresponding graphical framework for two related models. The first model is the transverse field quantum Ising model, an extension of the original Ising model which was introduced by Lieb, Schultz and Mattis in the 1960’s. The second model is the space–time percolation process, which is closely related to the contact model for the spread of disease. In Chapter 2 we define the appropriate space–time random-cluster model and explore a range of useful probabilistic techniques for studying it. The space– time Potts model emerges as a natural generalization of the quantum Ising model. The basic properties of the phase transitions in these models are treated in this chapter, such as the fact that there is at most one unbounded fk-cluster, and the resulting lower bound on the critical value in Z. In Chapter 3 we develop an alternative graphical representation of the quantum Ising model, called the random-parity representation. This representation is based on the random-current representation of the classical Ising model, and allows us to study in much greater detail the phase transition and critical behaviour. A major aim of this chapter is to prove sharpness of the phase transition in the quantum Ising model—a central issue in the theory— and to establish bounds on some critical exponents. We address these issues by using the random-parity representation to establish certain differential inequalities, integration of which gives the results. In Chapter 4 we explore some consequences and possible extensions of the results established in Chapters 2 and 3. For example, we determine the critical point for the quantum Ising model in Z and in ‘star-like’ geometries.
منابع مشابه
محاسبه انحنای اسکالر در مدل اسپینی مختلط چهارحالته و بررسی رفتار آن
In various statistical mechanical models, introduction of a metric into space of prameters gives a new perspective to the phase structure. In this paper, the scalar curvature R of this metric for a one dimensional four-state complex spin model is calculated. It is shown that this parameter has a similar behaviour to the Ising and Potts models.
متن کاملThe Asymmetric Random Cluster Model and Comparison of Ising and Potts Models
We introduce the asymmetric random cluster (or ARC) model, which is a graphical representation of the Potts lattice gas, and establish its basic properties. The ARC model allows a rich variety of comparisons (in the FKG sense) between models with diierent parameter values; we give, for example, values (; h) for which the 0's connguration in the Potts lattice gas is dominated by the \+" conngura...
متن کاملInformation Geometry, One, Two, Three (and Four) *
Although the notion of entropy lies at the core of statistical mechanics, it is not often used in statistical mechanical models to characterize phase transitions, a role more usually played by quantities such as various order parameters, specific heats or susceptibilities. The relative entropy induces a metric, the so-called information or Fisher-Rao metric, on the space of parameters and the g...
متن کاملar X iv : 0 70 5 . 05 06 v 1 [ m at h . PR ] 3 M ay 2 00 7 Space – time percolation
The contact model for the spread of disease may be viewed as a directed percolation model on Z×R in which the continuum axis is oriented in the direction of increasing time. Techniques from percolation have enabled a fairly complete analysis of the contact model at and near its critical point. The corresponding process when the time-axis is unoriented is an undirected percolation model to which...
متن کاملA Numerical Test of KPZ Scaling: Potts Models Coupled to Two-Dimensional Quantum Gravity
We perform Monte Carlo simulations using the Wolff cluster algorithm of the q=2 (Ising), 3, 4 and q=10 Potts models on dynamical phi-cubed graphs of spherical topology with up to 5000 nodes. We find that the measured critical exponents are in reasonable agreement with those from the exact solution of the Ising model and with those calculated from KPZ scaling for q=3,4 where no exact solution is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009